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The closed form solution of Troesch’s problem is developed in terms of Jacobian 
elliptic functions. From the closed form solution two interesting properties of Troesch’s 
problem can be found. The first is the location of a pole, the second is branching or 
bifurcation behavior. Depending on the value of the parameter n, the problem possesses 
a continuous solution and possibly one or more discontinuous solutions. Numerical 
evaluation of the closed form solution as well as numerical integration is carried out 
for II = 5(1)10 to show the effects of the discontinuous solutions on the numerical 
computations. 

1. INTR~OUC~~N 

Troesch [13] studied the two-point boundary value problem 

ji = n sinh ny (1.1) 
Y(O) = 0, Y(l) = 1 (1.2) 

to explain the difficulties encountered in the numerical solution of a two-point 
boundary value problem for a system of nonlinear ordinary differential equations 
which occurred in an investigation of the confinement of a plasma column by 
radiation pressure. He showed that the initial value problem associated with (1.1) 
has a pole approximately at 

ta. = (I/n> WVj@)) (1.3) 

which makes the solution of (1.1), (1.2) by shooting methods difficult, the difficulty 
increasing with increasing n. 
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In addition to its intrinsic interest, Troesch’s problem has become something of 
a test case for methods of solving unstable two-point boundary value problems 
because of its difficulties. Tsuda, Ichida, and Kiyono [ 141 solved (1. l), (1.2) by a 
Monte Carlo path integral calculation for n < 5. Roberts and Shipman [lo] used a 
combination of methods to solve (1. l), (1.2) for n = 5, 6 and 10. Miele, Aggarwal, 
and Tietze [9] obtained solutions accurate to six significant figures by a combination 
of the multipoint method and modified quasilinearization. They also found that 
with the appropriate initial profile, modified quasilinearization alone gives accurate 
results. Jones [7] solved (1. l), (1.2) by using Gear’s integration method for nonstiff 
equations and modifying the correction to j(0) so that the calculated value of 
1 y(“)(l) - 1 / decreases as 111, the iteration count number, increases. Chiou and 
Na [4] applied the method of transformation groups to convert the original 
two-point boundary value problem to an initial value problem which can be solved 
noniteratively. However in the course of the transformation n is transformed to an 
Fi whose value is not known, so that the initial value problem must be solved for 
several values of E and the solution for that value of Z corresponding to the given 
n is found by interpolation. KubiEek and HlavlEek [S] have also obtained values 
of 3’(O) for irregularly spaced values of n up to 29.71 by the so-called parameter 
mapping technique and have also given a transformation of Troesch’s problem 
which exchanges the independent and dependent variables, and thus eliminates the 
pole. It should be noted that most of the methods cited with the exception of 
Roberts and Shipman [lo] rely on some particular property of the structure of 
Troesch’s problem or knowledge of the general shape of its solution. 

It should also be noted that Henrici [6] solved the closely related problem 

p = sinh(y) - 2 (1.4) 

y(0) = y(1) = 0 (1.5) 

by a finite-difference method without encountering any difficulties. However, we 
performed some preliminary numerical experiments which indicated that Troesch’s 
problem poses difficulties for finite difference methods too. Indeed, the bound for 
the discretization error e, as given by Henrici [6] for a fourth-order method (p = 4) 
with a mesh size of 0.1 (h = 0.1) is lo-’ for n = 1 but is 10-l for n = 5. It appears 
that nonuniform meshes are necessary to obtain satisfactory accuracy when finite- 
difference methods are applied to Troesch’s problem. 

In his lectures on the multipoint methods, Bulirsch [2] remarked (but did not 
exhibit) that (1. l), (1.2) has a closed form solution in terms of elliptic functions. In 
their book [12] Stoer and Bulirsch give without the derivation the closed form 
solution. 

In this paper we give one form of the analytical solution of (l.l), (1.2). Since it 
can be used to generate accurate values of y(t) for the interval 0 < t < 1, it 
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should enhance the usefulness of (l.l), (1.2) as a test problem. We also note some 
properties of the closed form of the solution v(t) and exploit these to help explain 
phenomena observed in the numerical solution of (1.1). In addition we point out 
that the solutions of (l.l), (1.2) exhibit a form of branching or bifurcation and we 
discuss the nature and multiplicity of the solutions for PI = 1, 2, 3,..., 10. 

2. CLOSED FORM SOLUTION 

The closed form solution of (1. I), (1.2) may be obtained formally by first multi- 
plying both sides of (1.1) by j and integrating to obtain the familiar first integral 

j2 = 2 cosh(ny) + C. (2.1) 

The initial condition in (1.2) is used to evaluate the constant C 

c =$2(O) - 2. Q-2) 

The implicit solution of (1.1), (1.2) is then given by 

r = s ’ (dv/(C + 2 cash n~)l/~). 
0 

(2.3) 

If we replace 2 cash nv by 4 sinh2(nv/2) + 2 and if we make a change of variable 
z = inv/2, then (2.3) appears as 

or 

-2i 
s 

inyl2 

t = n(2 + C)ll2 
dz 

0 (1 - (4/(2 + C)) sin2 z)rj2 (2.4) 

in(2 + C)l12 t = 
2 I 

inrJ2 dz 
(1 - (4/(2 + C)) sin2 z)lj2 ’ (2.5) 

0 

Now (2.5) is of the form of [I, (16.1.3)]; namely, 

dtl ff= 
m sin2 0)112 (2.6) 

where 

zf = (in(2 + C)1/2/2) t, (2.7) 

p = iny/2, (2.8) 

m = 4/(2 + c). (2.9) 
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Now in terms of the Jacobian elliptic function sn(u ) m) we have the relationship 
sin 9 = sn(u 1 m)[l, (16.1.5)], so we may write 

sin iy _ sn ( in(2 : C)1'2 t ) 2 +" c j . (2.10) 

Since sin iz = i sinh z, sn(iu I m) = i SC(U I ml), where m, =: 1 - m (Jacobi’s 
imaginary transformation, [ 1, (16.20.1) I), the closed form solution of (1. l), (1.2) is 
given by 

v(t) = $ sinh-1 !sc ( n(2 + cy* 4 1 
2 r l- 2+c 1 )’ (2.11) 

However, the parameter m = 1 - (4/(2 + C)) in the cases of interest to us is 
negative. We have found it more convenient to express (2.11) in a form in which 
the parameter is positive and the dependence of y(t) and j(t) on this parameter is 
explicitly exhibited. This can be done by means of the change of parameter given 
in [I, (16.10. l)]; namely, p = m/(1 + m), p1 = l/(1 + m), u = u/(p$l” (where 
since m > 0 in the formulas, we take m = -[l - 4/(2 + C)]), and by means of 
[l, (16.10.2), (16.10.3)], and the boundary conditions (1.2) and (2.2). Further it is 
often necessary to compute the first derivative j(t)(for example, to evaluate the 
first integral of (2. l)), whose expression can of course be obtained by differentiating 
the closed form solution for v(r) and using [ 1, (16.16.9)]. The resulting expressions 
for the closed form solution of (1.1) and its derivative are then 

y(r) = z sinh-l 19 sc inf 1 1 - i jz(O)) 1 (2.12) 

j(t) = NWW~ I 1 - (l/4) 9V.Q) nc@ I 1 .- (l/4) NW 
cosW2) ~0) 

(2.13)’ 

That (2.12) satisfies (1.1) can of course be verified directly. Further, ~(0) = 0 since 
SC(O) = sn(O)/cn(O) = O/l = 0. The boundary condition y(l) = 1 will be satisfied 
if m satisfies the transcendental equation 

sinh(n/2)/(1 - n~)‘/~ = SC@ / m) (2.14) 

where m = 1 - $pz(0) and the required value of j(0) is equal to 2 (1 - m)ll”. It 
may be objected that (2.12) is not quite the “closed-form” solution of (l.l), (1.2) 
since j(O) is only defined implicitly by (2.14). However (2.14) lends itself to a simple 

1 One of the referees pointed out that if cosh(n/2)y(t) is expressed in terms of (2.12), and if 
[l, (16.9.3)] is used with m = 1 - &j*(O) (and therefore m, = $9*(O)), then (2.13) simplifies to 
j(f) = $(O) nc(?It 1 1 - p(O),. 
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graphical analysis, from which important properties of the solution of (1. I), (1.2) 
can be deduced. 

We have given the details of the closed form solution of Troesch’s problem in 
the form (l.l), (1.2) because this is the form treated in the cited references. We 
observe that it is possible to obtain a closed form solution to the most general 
problem of the form (2. l), (2.2): 

ji = a sinh by a, b > 0, to ,( t < tf , (2.15) 

Y(hl> = -4 r(b) = B. (2.16) 

Little essentially new emerges in this more general treatment except for some 
complications in satisfying the boundary conditions. In the first place, by a linear 
transformation of the independent variable, (2.15), (2.16) can be transformed to a 
problem of the same form with to = 0, tf = 1. Next, by scaling the dependent 
variable, (2.15), (2.16) can be transformed into a problem of the same form with 
a = b = n. Finally, from (2.11) we can derive the expression 

y(t; c1 , c2) = (2/n) sinh-l {sc(rq(t + cz)/ 1 - (l/cIz))} (2.17) 

which satisfies (2.15) (with a = b = n). The parameters c, and c, are then deter- 
mined by solving (if possible) the pair of simultaneous transcendental equations of 
the form 

sinh(nd/2) = sc(nc,c, 1 1 - (l/c12)) (2.18) 

sinh(nB/2) = sn(nc,(c, + l)! 1 - (1/c12)). (2.19) 

We have not carried out the analysis of (2.18), (2.19), which does not appear to 
yield insights into the behavior of the solutions of (2.15), (2.16) as readily as (2.12) 
does with respect to (l.l), (1.2). 

3. PROPERTIES OF THE SOLUTION OF TROESCH'S PROBLEM 

Troesch’s problem has two interesting (and related) properties which bear on the 
numerical difficulties it presents. These properties are easily derived from the closed 
form solution. In the first place, the solution has a pole located approximately at 

t, = (l/n) WWW. (3.1) 

Troesch [5, 131 derived this expression for t, from a consideration of the first 
integral (2.3). Expression (3.1) for t, can also be obtained, and in a very simple 
manner, from the closed form expression as follows. 
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From (2.12) we recognize that a pole of v(t) occurs at a pole of sc(nt I 1 - &j”(O)). 
By [I, Tables 16.2 and 16.51 we see that SC(U I m) has a pole at u = K, where K, the 
complete elliptic integral of the first kind, is defined as 

K(m) = inI2 (de/(1 - 07 sin2 19)l/~) (3.2) 
0 

By [1, (17.3.26)] for m w 1 

K(m) M (l/2) ln(l6/(1 - m)) (3.3) 

so the pole of sc(nr ( 1 - $j2(0)) occurs at nt = K(m) or 

(3.4) 

or the pole is given by 

in agreement with (3.1). The significance of (3.1) for shooting methods, as has been 
noted frequently, is that reasonable guesses for the missing initial condition p(O) 
may give a numerical solution to ( 1.1) which has a pole for 0 < r < 1. Stoer and 
Bulirsch [12] give a similar derivation of (3.1). 

The second property of the solutions of (1. I), (1.2) we wish to point out is a kind 
of branching or bifurcation which they exhibit. This behavior might be expected, 
since the similar problem 

9 + K sin y = 0, (3.6) 

jt(0) =j(l) = 0, (3.7) 

which arises in the study of the buckling of a thin rod under compression, is used 
by Stakgold [1 I] as a model problem to illustrate the branching phenomenon. 

When the boundary condition ~(1) = 1 is introduced into (2.12), we obtain the 
transcendental equation (2.14) which is the relationship determining m as a func- 
tion of n, and which, as was mentioned earlier, lends itself to a simple graphical 
analysis. If the left- and right-hand sides of (2.14) are plotted as a function of m, 
the intersections of the two curves are the roots of (2.14). The roots in turn give the 
missing initial condition j(O) through the relationship m = 1 - $9”(O). Now the 
left-hand side of (2.14) sinh(n/2)/(1 - m)li2, increases monotonically from 
sinh(n/2) to 00 as m goes from 0 to 1. The general shape of the right-hand side of 
(2.14), sc(n I m), can be deduced from the location of its zeros and poles, which are, 
respectively, at 0,2K, 4K ,..., and K, 3K, 5K ,.... Since K is related to m through 
(3.2), for a given value of n, sc(n I m) will have a zero (pole) if a value of 
m, 0 < m < 1, can be found such that K(m) = n/2, n/4, n/6 ,..., (K(m) == n, n/3, 
n/S,...). And since SC@ / 0) = tan n, the number of zeroes (poles) will increase by 
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one as n increases through even (odd) multiples of n/2. With this information, 
graphs such as the ones in Fig. 1 can be sketched. From this informal graphical 

1.0 

- sc(nlm) 

sinh($) 

FIG. 1. Sketches of sc(n 1 m) and sinh(n/2)/(1 - m)“* versus m. 

analysis it is apparent that (2.14) has k + 1 roots for (2k + 1) 42 ,( n < (2k + 3) 
7r/2. It would thus appear that as n increases, branching or bifurcation of the 
solutions of (l.l), (1.2) occurs at odd multiples of rr/2. However, in contrast to 
Stakgold’s [11] model problem, only the solution corresponding to the largest 
value of m, mmax , remains finite for 0 < t < 1, the remaining “solutions” all 
having a pole at some t, , 0 ,< f, < 1. We call the latter “discontinuous solutions.” 
They have the property that they meet the boundary conditions (1.2) and satisfy 
the differential equation (1.1) everywhere in [0, I] with the exception of a finite 
number of points. Although the discontinuous solutions may not have physical 
meaning, they seem to have a bearing on the numerical behavior of the solution of 
(l.l), (1.2), discussed in the next section. Continuous and discontinuous solutions 
for n = 5 and 10 are shown in Figs. 2 and 3, respectively. 

SSI/21/3-4 
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FIG. 2. Closed form solutions for n = 5. 

-4 I 1 I .’ 

FIG. 3. Closed form solutions for n = 10. 
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4. NUMERICAL BEHAVIOR OF THE SOLUTIONS 

We remark first that our computation of the solution of (1. l), (1.2) from the 
closed form (2.12), (2.13) is straightforward once m (and then j(0)) has been found 
from (2.14). In the following all the formulas cited for the various Jacobian elliptic 
functions may be found in [I]. The functions SC(U 1 m), nc(u / m), and dc(u 1 m) 
occurring in (2.12), (2.13) are defined in terms of the functions sn(u ( m), cn(u 1 m), 
and dn(u 1 m)[l, (16.3.1)-(16.3.3)] which are evaluated from their respective series 
in powers of the nome q = exp(-r&‘/K)[l, (16.23.1)-(16.23.3)]. For larger values 
of m (in our work m >, 0.8) Landen’s decreasing transformation is employed to 
ensure that q < 0.001 [l, (16.12.1)-(16.12.4)] in which case only three or four 
terms of the series need be evaluated for an accuracy of 1O-8. The complete elliptic 
integral is evaluated from an approximation due to Hastings (( 17.3.34)) which also 
has a maxium error of 2(1O-8). 

The difficulty in computing the solution to Troesch’s problem from the closed 
form comes in solving (2.14) for m, since as n grows, the roots have a point of 
accumulation at m = 1. It becomes increasingly more difficult to extract the root 

TABLE I 

Roots and Poles of sinh(n/2)/(1 - m)*ln = SC@ I m) 

It m 3’(O) ErroF Comment 

1 0.8214081054 0.8452026845 (10-D) 
2 0.9327580075 0.5186212200 (10-D) 
3 0.9836666214 0.2556042136 (10-O) 
4 0.9968707071 0.1118801662 (10-B) 
5 0.3126178877 1.658170211 (10-B) 
5 0.9994767238 0.04575046116 (10-O) 
6 0.6698731471 1.149133330 (10-9) 
6 0.9999194408 0.01795094997 (10-B) 
7 0.8379720769 0.8050538442 (10-B) 

I 0.9999882093 0.006867509416 w-9 
8 0.08834209269 1.909615571 2.8(10+) 
8 0.9192082346 0.5684778461 2.8(W9) 
8 0.9999983266 0.002587169460 7.3(10-E) 
9 0.4374757450 1.500032339 1.2(10-B) 
9 0.9592742677 0.4036123497 2.7( 1O-9) 
9 0.9999997669 0.0009655844857 2.3(10-3 

10 0.6460486919 1.189876141 x0(10-9) 
10 0.9793234552 0.2875868197 1.4(10-B) 
IO 0.9999999678 0.0003583377707 1.2(10-3 

a error = 1 (sinh(n/2)/(1 - m)ll*) - sc(n 1 m) /. 

soln. 
soln. 
soln. 
soln. 
discont. soln. 
soln. 
discont. soln. 
soln. 
discont. soln. 
soln. 
discont. soln. 
discont. soln. 
soln. 
discont. soln. 
discont. soln. 
soln. 
discont. soln. 
discont. soln. 
soln. 
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corresponding to the continuous solution from the roots corresponding to the 
discontinuous solutions and increasingly more difficult to compute tnnmas accurately. 
In Table I are tabulated n, m, j(O), and the residual error I(sinh(n/2)/(1 - n~)l/~) - 
SC@ j m)l for the roots of (2.14) (corresponding to continuous and discontinuous 
solutions) for n = 1, 2,..., 10. Note that for n = 8, 9, 10 there are two discon- 
tinuous solutions. It will be observed that while the residual error is of the order of 
1O-g for n = l,..., 6, it has increased to 1O-6 for n = 7, to 1O-4 for n = 9, and to 
lo-* for n = 10. Again the graphs indicate the reason for this. As n increases the 
graph of sc(n 1 m) in the neighborhood of mmax becomes increasingly steep, so 
that small changes in m produce large changes in sc(n 1 m). The problem of solving 
(2.14) becomes more and more sensitive (ill-posed) with increasing it, and then the 
error in computing nlmax also grows. 

Since Troesch’s problem is sensitive in the forward direction, if one were solving 
it by a numerical method that requires integration of (l.l), one might consider 
integrating it in the backward direction, that is from 1 to 0. It is our belief that here 
the existence of the discontinuous solutions make backward integration subject to 
the same difficulties as forward integration. From Table II, which gives the values 

TABLE II 

Closed Form Solution 

tl 3x0) Y(l) m Comment 

1 0.8452026845 1.000000000 1.341837966 soln. 
2 0.5186212200 1.000000000 2.406939711 soln. 
3 0.2556042136 I.000000000 4.266223175 soln. 
4 0.1118801662 0.9999999999 7.254582910 soln. 
5 1.658170211 0.9999999999 12.21349333 discont. soln. 
5 0.04575046116 0.9999999999 12.10049568 sohl. 
6 1.149133330 0.9999999999 20.06867706 discont. soln. 
6 0.01795094997 1.000000000 20.03575367 soln. 
7 0.8050538442 0.9999999999 33.09505159 discont. soln. 
7 0.006867509416 0.9999999999 33.08526669 soln. 
8 1.909615571 1.000000000 54.61322834 discont. soln. 
8 0.5684778461 1.000000000 54.58279367 discont. soln. 
8 0.002587169460 1.000000000 54.57982377 soln. 
9 1.500032339 0.9999999999 90.01851810 discont. soln. 
9 0.4036123497 1.000000000 90.00692027 discont. soln. 
9 0.0009655844857 0.9999999996 90.00618074 soln. 

10 1.189876141 0.9999999999 148.4111963 discont. soln. 
10 0.2875868197 0.9999999999 148.4067081 discont. soln. 
10 0.0003583377707 1.OoOOoO012 148.4065422 soln. 
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of y(l) and j(1) as computed from the closed form solution, it appears that for 
each n, p(1) for at least one discontinuous solution approaches j(1) for the con- 
tinuous solution. Thus we conjectured that if backward integration is initiated 
with $( 1) slightly different from the value corresponding to the continuous solution, 
that the numerical solution would, so to speak, land on the discontinuous solution 
and that as a result computer over-how would occur well before t = 0 were reached. 

To explore this conjecture, we carried out a series of numerical integrations of 
(1.1) as initial value problems. For the continuous solution cases we integrated 
forwards and then backwards using the Bulirsch-Stoer method [3].2 For the 
forward integration j(0) was obtained from the analytical solution (2.14). For the 
backward integration y(l) and j(1) were obtained from the previously carried out 
forward integration. In addition the backward integration was carried out using 
the y(l) and j(l) obtained from the analytical solutions (2.12) and (2.13). Table III 
lists for n = 5, 6, 7, 8, 9, 10 the initial and terminal conditions for these forward 
and backward integrations3 

From Table III we see that for n = 9 and 10, even with p(1) computed from the 
closed form solutions, backward integration resulted in overflow. We ascribe this 
to the inaccuracy in j(l) due, in turn, to the inaccuracy in m (see Table I) which 
resulted in the computation of one of the discontinuous solutions with its attendant 
pole. 

From Figs. 2 and 3 and the closed form solution it is evident that as n increases, 
the solution of Troesch’s problem approaches the discontinuous function which 
is zero for 0 < t < 1, and unity for t = 1. Therefore it would appear that as n 
increases any numerical method of solution will experience difficulties. 

The closed form solution does help to explain the success of the parameter 
mapping technique of KubiEek and HlavaEek [S]. By means of the transformations 
w = ny, x = nt, they transform (1 .I), (1.2) into the problem 

d2w/dx2 = sinh w (4.1) 
w(0) = 0, w(n) = n. (4.2) 

For a given value of dw(O)/dx = j(O), (4.1) is integrated until the line w = x is 
crossed. That value of x is then the value of n in (1. I), (1.2) to which the value of 
j(0) corresponds. 

The KubiEek and HlavaEek technique solves the “inverse” problem in that it 
finds the n that corresponds to the correct value of G(O) rather than the other way 

a The step size was set at h = 0.001 and the tolerance on the single step error for each com- 
ponent was set equal to 0.0001. In each component the error test tolerance is relative for those 
components greater than one and absolute for others (see [HI). 

* Backward integrations using y(l) = 1 and i(l) from Table III were also carried out and gave 
essentially the same results as the BA runs in Table III. 
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around. The KubiEek and HlavaEek method can always find the solution for every 
slope, C(O), 0 < C(O) < 1, because the discontinuous solutions correspond to 
values of x greater than n. Since the curve w(x) is concave upward, for a ~$0) 
between 0 and 1 the curve will always cross the line w = x at a value of x cor- 
responding to the continuous solution before it becomes infinite at a value of x 
corresponding to one of the discontinuous solutions. 

To illustrate this behavior let us see what happens when a value j(0) is chosen 
which corresponds to a discontinuous solution. For example (see Table I of 
KubiCek and HlavdEek [8]) p(O) = 0.4 corresponds to the continuous solution for 
n = 2.394 and also to a discontinuous solution for n - 9 (see Table I). When (1.1) 
is integrated by the Bulirsch-Stoer method with j(0) = 0.4 and IZ = 2.394, the 
integration proceeds smoothly, and y(l) M 1. However, when (1.1) is integrated 
with j(O) = 0.4 and n = 9. overflow occurs at approximately t = 0.334 in agree- 
ment with our theory which locates a pole of the discontuous solution at t, = 
0.3342. Now the integration of (4.1) with dw(O)/dx = 0.4 proceeds without diffi- 
culty to x = 2.394, thus satisfying the boundary condition w(n) = n. But if the 
integration is continued, overflow occurs at x w 3, as expected, since the pole of 
the discontinuous solution for n = 9 occurs at x w 3.0074 (= 9 x 0.3342). 
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